
1

Memory Hierarchy and Loop Transformations

Hadi Fawad

Abstract—This laboratory provides an initial exploration into the realm of memory hierarchy, data layout, and loop transformations,

delving into their intricate connections and its impact on code efficiency.

✦

1 OVERVIEW

1.1 What is the problem?

In this lab, we were presented with the challenge of op-

timizing a given set of baseline computations to improve

their performance using what we’ve learned in class. The

primary focus was on data layout, loop transformations,

and memory hierarchy. We were asked to apply multiple

loop transformations, such as Unswitching, Splitting, Fis-

sion, and Interchange. Beyond this, we also used various

different forms of parallelism such as SIMD, OpenMP, MPI,

and Instruction Level Parallelism.

The overarching problem in this lab is multifaceted,

asking us how we can most effectively implement these

strategies and provide the reasoning and approach within

this document.

1.2 What are the pain points in this problem?

There were a multitude of possible and encountered prob-

lems in this lab, some of the more technically related prob-

lems everyone faced are listed below:

Loop Transformations: Understanding how to imple-

ment many different forms of loop transformations can

prove to be an issue as each one has their own set of rules

and interact differently with the given code. Ensuring that

they’re tailored to each specific case given by the instruction

document is an issue.

Schooner Usage: Navigating the usage of the Super-

Computer was definitely an issue in this lab, there was

a learning curve that went beyond the conventional com-

puting (local/gpel) environments that everyone was accus-

tomed to. Coordinating what tasks were running on gpel

vs. schooner required constant communication. Queue wait

times on the schooner has also been unreliable with some

queues taking much longer than others even when they’re

executed on the same code multiple times.

Tuning: Tuning some of the loops such as unrolling

or blocking require simple trial and error rather than any

other approach, this proved to be time consuming. After

a certain point it would also be hard to gauge whether or

not the returns were diminishing or not. Attempting this on

schooner would prove to be even more demanding.

Other: There were also issues surrounding the MPI

Learning curve, Parallelism, and general understanding of

the project to ensure that each subtask was correctly imple-

mented and was a more efficient approach.

1.3 How do we plan to solve this?

The plan is to utilize both lecture slides and online resources

to cover our knowledge gaps and complete the assignment.

For the implementations of the 1D stencil, are going to

use multiple different forms of parallelism to improve the

efficiency of the operations.



2

1.4 How does this relate to material we covered in

class?

This relates to the material that was covered in class be-

cause the correct implementations of these transformations

require a detailed knowledge of how data is accessed in

memory. We need to understand and be able to manipulate

the C code to effectively access data in a way that will

perform the best on the hardware that is available, whether

that be on the supercomputer or the gpel machines.

2 LOOP TRANSFORMATIONS

2.1 Loop Unswitching

Loop switching is a programming technique that allows for

different sections of code to be executed based on specific

conditions. In the context of a 1D stencil operation, loop

switching is often used to implement boundary conditions

or handle edge cases efficiently. This technique optimizes

code execution depending on the position of the loop’s

iterator.

Our code iterates through the i0 loop, representing po-

sitions in a one-dimensional array. The inner p0 loop pro-

cesses neighboring elements to compute a result res. Loop

switching occurs within the conditional statement, where it

checks whether p0 + i0 is within the bounds of the array

input distributed. If it is within bounds, the code performs

a standard operation by multiplying elements from in-

put distributed and weights distributed, accumulating the

result in res. However, if p0 + i0 goes beyond the array

bounds, it switches to a wrap-around operation, ensuring

that the code correctly handles boundary conditions by

referencing elements at the beginning of the array.

2.2 Index Set Splitting

Index set splitting is a technique commonly used in parallel

computing to divide a problem into multiple subproblems

or index sets that can be processed independently and

concurrently by multiple threads or processes. Each sub-

problem corresponds to a subset of the original data, and

by splitting the index sets, it’s possible to perform compu-

tations in parallel, which can lead to improved performance

in multi-core or distributed systems.

Our code processes an array using two separate loops,

res1 and res2, with the goal of optimizing performance

through parallel execution. The key concept here is the

variable loopEnd, which represents the point in the array

where the index set is split.

The first loop, controlled by p0, processes elements up

to loopEnd, while the second loop, also controlled by p0,

handles elements beyond loopEnd. This division effectively

splits the index set into two parts, allowing for paralleliza-

tion of resources to calculate res1 and res2 concurrently.

Once both res1 and res2 are computed for each i0, the final

result, output distributed[i0], is obtained by summing the

results from both loops.

2.3 Loop Fission

Loop fission is the process of splitting a loop into multiple

loops over the same index range, but each performing part

of the operations of the original loop. In the context of this

assignment, we’ve applied loop fission to the COMPUTE

NAME function.

In the original version, each iteration of the loop com-

putes a weighted sum of the input elements by initializing

a temporary variable, then applying a weighted sum. With

fission, we have essentially split the loop into two parts. In

the first part, we initialize an empty array of values that are

filled in a second loop. It was hypothesized that separating

initialization and writing will improve cache utilization over

constantly flipping between the two.

As shown in the graph below, the performance boost

below supports our hypothesis caused by more efficient

cache utilization.



3

2.4 Loop Interchange

Loop interchange is an optimization technique that im-

proves loop nesting. In the context of the stencil operation in

our lab, we can apply loop interchange to the nested loops

in the COMPUTE NAME function.

Loop interchange is an optimization technique that im-

proves loop nesting. In the context of the stencil operation in

our lab, one can apply loop interchange to the nested loops

in the

In the event that k0 ≤ m0, the initialization of output

distributed and the summation operation will be consecutive

in memory, so the inner loop’s operations will benefit from

better cache locality. This is supported by our graph, where

each instance of loop interchanging is always at or below

the performance of the baseline code.

2.5 Plot of Four Transformations

3 CODE GENERATORS

We used code generators to sweep through different factors

for both Loop Unrolling and Loop Blocking. Below are the

results.

3.1 Loop Unrolling

Loop unrolling is an optimization technique in computer

programming and compiler design that aims to improve the

execution speed of loops. It involves reducing the overhead

of loop control and iteration by manually expanding (un-

rolling) the loop body. The goal of this lab was to create an

unrolling variant that has no loops.

The code generator takes in the m0 and k0 values, and

then creates a C file that is specific for both of those values.

There is no ”for” loops in the resulting file, but instead, the

generator performs the loops and prints out the appropriate

instruction, in order, to the generated file. When executed,

this file will run in optimal time since there are no loops to

go through, which can greatly enhance performance.

3.2 Loop Blocking

Loop blocking is a technique used to improve the perfor-

mance of nested loops in computations. It involves dividing

loops into smaller, cache-sized blocks, and then processing

these blocks sequentially. By doing so, loop blocking en-

hances data locality, reducing memory access latency and

improving cache efficiency.

The code generator can work with different sized blocks.

The outermost loop, controlled by bi, processes these blocks

iteratively, and each block encompasses a subset of the total

iterations defined by block size. I set block size to be 8

during testing, and a major limitation is that this block size

should be incremented in the same amount that m0 is.

Within each block, the inner loop, controlled by i0, computes

the result for individual loop iterations while considering

boundary conditions through modulo arithmetic. Thus, we

achieve loop blocking.

3.3 Code Generator Graph

The graph below shows the different performances of the

unrolling and blocking as compared to the baseline. It is

very clear that Loop Unrolling significantly outperforms the

other variants; in this context, removing the for loops is a

significant performance increase. I believe the reason for this

is data locality; in a stencil, only the edges are not accessed



4

sequentially. The rest of the operations can be perfomed

extremely fast without the need for a loop.

4 PARALLELISM

4.1 Instruction Level Parallelism

Within our code, ILP was used to perform operations in par-

allel. Inside the loop controlled by p0, the code performs ILP

by simultaneously loading and processing four float values

at a time. It does this by loading sets of four elements from

input distributed and weights distributed, and then using

SIMD instructions to perform multiplication and addition

operations on these sets in parallel. This approach leverages

ILP to effectively execute multiple instructions at the same

time, significantly enhancing the computational efficiency

by processing multiple data elements concurrently, and

ultimately improving the performance of the code.

4.2 SIMD

The upgraded implementation uses SIMD operations to

parallelize the computation, using AVX512 available on

processors like Schooner. In the COMPUTE NAME func-

tion, rather than computing the base operation element

by element, our new version batches these calculations in

groups of eight using 256-bit wide AVX2 intrinsics. This

means that, the input data is loaded into AVX registers

using mm256loadups, and weights are broadcasted us-

ing mm256broadcastss. These values are then multiplied

and stored. The results are stored back to memory using

mm256storeups.

4.3 OpenMP

The code uses MPI for distributed memory parallelism and

OpenMP for shared memory parallelism to operate using

a set of data. The program functions on arrays of floating-

point values, specifically input, weights, and output. The

computation takes place on the root node, denoted by the

root rid, which for the purpose of this code is set to 0. On

this node, for each element in the input distributed array,

the code multiplies it with corresponding weights from the

weights distributed array and accumulates the results. The

memory for these arrays is allocated and initialized on the

root node, while other nodes are seemingly set up for poten-

tial future extensions or modifications. Memory deallocation

is also handled on the root node once the computations are

complete.

4.4 MPI Send & Receive

To parallelize the code without using the MPI collective

library, data was manually sent to each rank.

First, the DISTRIBUTED ALLOCATE NAME and DIS-

TRIBUTED FREE NAME functions remained mostly the

same - they allocate and free the input and weights vectors

as needed. We continue by dividing the input vector and

distribute that and the full weighted vector to each rank.

The computation is then split among multiple MPI

processes. The workload is divided evenly so that each

process calculates a portion of the stencil operation. Halo

cells are used for communication between processes to

handle boundary conditions. We’ve done this because each

process must have the necessary data to compute the stencil

operation near the chunk boundaries, otherwise we’ll get

confusing segmentation faults. Once the computation is



5

complete, each rank sends its chunk of the output array

back to the root rank, which assembles them back into the

full output array.

Once the computation is complete, the root rank first

copies its own chunk of the output data into the correct

position in the output sequential array. Each rank sends its

chunk of the output array back to the root rank. When this

happens, the root rank enters a loop where it calls MPI Recv

once for each of the other ranks. These calls are blocking

and sequential, meaning the root rank waits for each MPI

Recv to complete before proceeding to the next. This process

is done one rank at a time.

At this point, while we have the framework for these

operations, the test cases are not passing. This is because of

a bug in our program that causes only the first 3 ranks to be

accessed and written to, thus causing the fourth ’chunk’ of

the stencil operation to always be empty.

4.5 MPI Collective Communications

Like the above implementation, we used parallelism tech-

niques from MPI. However, we did not limit ourselves to

using only sends and receives. In the code, there are also

references to . It was hypothesized that these libraries will

provide a significant boost over our manual implementation

in the previous section, since these libraries are carefully

optimized.

We start by allocating memory to the input, output,

and weights, just as we did in the above example. We use

scatterv and broadcast to separate the data into blocks and

distribute them from the rank node to the other nodes. From

there, each process performs the computation (as seen in

COMPUTE NAME) and gathers said computations using

gatherv to then be combined. Unlike in our naive approach

for gathering data in the above method, MPI’s gathering

algorithm will sometimes perform this in parallel.

Our program ran into a few problems, which we hypoth-

esize are due to memory leaks. To debug this, the following

Valgrind test were run:

mpiexec -n 4 valgrind –leak-check=full –track-origins=yes –

trace-children=yes ./mpiCollective.x

(The full output can be found on our Gitlab submission.

The file also includes the failing tests before memory leaks

occured.)

Give the output from Valgrind, it was determined that

there are a few memory leaks within the program. Almost

all of them point to one of three areas - pthread creation,

memory leaks from MPI libraries, and early deallocation in

memory that point to MPI and MPIx libraries.

5 COMBINING PARALLELISM

We have implemented many different forms of parallelism

in this lab, but up until now, they have been performed

seperately. To achieve optimal results, combining different

forms of parallelism to optimize the performance of a 1D

stencil. The below sections describe how we implemented

2, 3, and 4 forms of parallelism together and how they

performed in contrast to each other.

5.1 2 Forms

Our code leverages OpenMP parallelism with the

#pragma omp parallel

for directive to parallelize the outer loop, allowing multiple

threads to concurrently process different iterations of the

loop within a single node. This shared-memory parallelism

optimizes the computational efficiency on a local level.

Second, the code utilizes MPI for distributed-memory par-

allelism. While the OpenMP parallelism enhances perfor-

mance within a single node, MPI ensures synchronization

and coordination across all processes before continuing,

making it suitable for distributed computing scenarios.

5.2 3 Forms

For three forms, leveraging shared memory parallelism

through OpenMP by again using the parallel directive was



6

crucial. It also uses ILP is achieved within the inner loop

by executing element-wise multiplications and additions si-

multaneously, capitalizing on the CPU’s capacity for parallel

instruction execution. Additionally, the code demonstrates

data parallelism in the outer loop, processing various ele-

ments of the input and output arrays independently and in

parallel. These combined forms of parallelism optimize the

code’s performance, particularly on multi-core architectures

such as the supercomputer.

5.3 4 Forms

For our 4 forms of paralleism, employing SIMD parallelism

by using SSE instructions to perform vectorized operations,

Data Parallelism through concurrent processing of indepen-

dent data elements within the outer loop, Message Pass-

ing Parallelism via MPI for distributing and aggregating

results across multiple ranks or nodes, and implicit Loop

Parallelism, where multiple iterations of the outer loop

can be executed concurrently. These parallelism techniques

collectively enhance computational efficiency, making effi-

cient use of vectorized instructions, distributed computing

resources, and concurrent loop processing.

5.4 Graph of Combining Parallelism

In the following graph, output1 is 2 forms of

parallelism, output2 is 3 forms, and output3 is 4

forms. It can clearly be seen that combining all 4

forms of parallelism significantly outperform all others.


